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Abstract

This comment focuses on the statistical limitations of a model grading, as applied by
D. Waugh and V. Eyring (2008) (WE08). The grade g is calculated for a specific di-
agnostic, which basically relates the difference of model and observational data to the
standard deviation in the observational dataset. Monte Carlo simulations show that5

this method is not leading to statistical significant gradings. Moreover, the difference
between two models is hardly significant. The results of the statistical tests performed
in WE08 agree with our findings. However, most of those tests are based on special
cases, which implicitely assume that observations are available without any errors and
that the interannual variability of the observational data and the model data are equal.10

Without these assumptions the grading becomes basically insignificant. We further
show that the inclusion of confidence intervals into the grading approach is necessary,
since it has the potential to change the grading results drastically.

1 Introduction

Waugh and Eyring (2008) (WE08) applied a set of performance metrics to climate-15

chemistry models (CCMs) aiming at quantifying their ability to reproduce key processes
relevant for stratospheric ozone. These performance metrics are used to calculate a
quantitative measure of performance, i.e. a grade. These grades are employed to
illustrate the ability of individual models to simulate individual processes and to identify
general deficiencies in modelling key processes. These grades are further applied to20

weight individual CCM projections of the ozone layer to derive a weighted multi-model
mean projection.

There is no doubt that the general approach, i.e. the model validation and grad-
ing, provides an important contribution to scientific questions regarding stratospheric
ozone. However, the approach relies on the way the grading is performed and hence re-25

quires a statistical robust definition of the grading. Although the authors have discussed
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some statistical considerations, these considerations do not have any implications on
the grading, e.g. no confidence interval for the grading value is given. Moreover, effects
like uncertainties in the observational data are not included in most of the gradings:
the grading formula (details see below) includes a parameter σobs, which is defined for
some diganostics as the interannual variability and for others as an uncertainty due to5

the measurement. However, this does not replace the need for consideration of confi-
dence intervals. Our results suggest that even the qualitative results, obtained in WE08
will change drastically when these effects are included in the grading.

In the next section, we are addressing the questions related to errors in model and
observational data: “What statistical implications do these errors have on a model grad-10

ing?” and “What statistical implications do they have on the difference of two model
grades?”. In Sect. 3 we define the general statistical terms, which we use. In Sect. 4,
we present examples, which are aimed to clarify the shortcomings of the grading. In
Sect. 5 the implications for a grading are discussed, when statistical significance lev-
els are included in the grading approach. This illustrates the difference between the15

information on model performances presented in WE08 and the statistically robust in-
formation.

2 What is a grading?

Generally, a grading means “How well does a test object represent a certain reference
value?”. It consists of two parts, a test of the object against a reference value and a20

relation between the outcome of the test and a grade. That is exactly what the first two
sentences of the abstract of Waugh and Eyring (WE08 in the following) is about: “A set
of performance metrics is applied to stratospheric-resolving chemistry-climate models
(CCMs) to quantify their ability to reproduce key processes relevant for stratospheric
ozone. The same metrics are used to assign a quantitative measure of performance25

(”grade”) to each model-observations ...”
So there are two basic questions: “When does a test object represent the reference
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value, i.e., when is a model able to reproduce key processes?” and “How to derive a
grade from a difference between the test value and the reference value?”.

It is important to separate these two questions. It is necessary to find a method
dealing with either question. This is one of the main reasons, why the methodology
applied in WE08 does not provide the information it was designed for.5

2.1 When is a model result representing an observation?

In this case the test objects are results from climate-chemistry models and the refer-
ence value is a certain observation.

The reference value itself is not precisely known, basically for four reasons:

1. uncertainties in measurement techniques,10

2. uncertainties in methodology,

3. representativity for a certain region and time, and

4. representativity for a climatological value.

The first point summarizes all uncertainties associated with the measurement tech-
niques, e.g., the precision of a measurement. The second one is more related to the15

processing of the measured data to derive the physical quantity, e.g., retrieval algo-
rithms. The third one describes an uncertainty, which is related to the temporal and
spatial coverage of the measurements. The sampling of data by satellite measure-
ments might be restricted to clear sky conditions, a certain local time or a latitude-
longitude-time relation. If vertical profiles or certain height information are used, these20

might only represent a certain height region, weighted with a kernel function, or the
vertical localisation is given within an uncertainty range, only. These three types of un-
certainties describe an uncertainty which is related to an observation for a certain area
and time period. For simplicity reasons let us assume that the observations are given
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with a mean value µobs and an uncertainty range expressed by a standard deviation
σunc

obs . Note that a bias also may occur, which complicates the whole picture.
In the case of a quality assessment of climate-chemistry models a further uncertainty

has to be regarded in addition, namely climate variability. Because of the inter-annual
variability, a climatological mean value can only be determined within a confidence5

interval. Here we assume that this variability can be expressed by a standard deviation
σ iav

obs.
To summarize, all of these uncertainties limit the accuracy to which a climatologi-

cal value from any observation can be determined. The uncertainties and errors are
discussed in WE08 and the grading approach includes a variability measure, which10

is based on either the interannual variability or a measurement uncertainty. In Fig. 5
of WE08 the uncertainty of the grade with respect to the used observational data set
(ECMWF versus UKMO) has been impressively demonstrated. However, these find-
ings are not systematically included in the grading, i.e., from a grade 0.2 it cannot be
determined, whether the grade is low because the model is incorrect or the observa-15

tional data are uncertain.
Figure 1 gives an illustration for the comparison of two 10 year model data sets (blue

and green) and a 10 year observational data set (red). All are produced with computer
generated random numbers for Gaussian distribution (black line) with expectation 0
and standard deviation 1. Note that this example neglects any uncertainties in the20

observational data, i.e. σunc
obs=0 and just takes into account an interannual variability.

In this example the underlying probability distribution is identical for the “model” and
“observational” data. Hence model and the reality are identical, implying that the model
is representing the reality perfectly. However, the 10 realisations for either “model run”
and the “observations” differ.25

The conclusion from this example is that from both, the observational data and the
model data, the underlying probability distributions have to be estimated and compared
in a statistical manner. This implies that at first a decision has to be made on the
accuracy of the statements. I.e. what is the error that is tolerated in the decisions or in
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the uncertainty of the grade. Then the estimates for the probability distributions have
to be compared and a decision can be made whether the model represents the reality
or not. Note that in the example the assumed distribution is Gaussian, the estimates
for the expectation (which is 0 in the example) is the sample mean value (differing from
zero) and for the standard deviation the sample standard deviation of the data.5

2.2 When is a model better than another?

Model grades are used and will be used to rank models. Grades condense a complex
context into a single number. However, as shown in Fig. 1, every intercomparison can
only lead to a grade within a certain error range, which depends on a large number of
parameters. Hence two models (Fig. 1) might get two very different grades, however10

with errorbars that are that large that the grades themselves do not differ statistically.
Therefore a grade itself is meaningless, unless an estimate for the uncertainty is given.
Two model results are given (blue and green) in the example above (Fig. 1). They are
realisations (random samples) of the same random variable (X ), which in this case has
a normal distribution with expectation E (X )=0 and standard deviation S(X )=1 (N(0,1)).15

However, their gradings differ: Model X has a grade of 0.77 and Model Y of 0.46, when
applying formula (4) of WE08:

g =

{
1 − 1

ng
|µmodel−µobs |

σobs
, if 1

ng
|µmodel−µobs |

σobs
≤ 1

0, else
(1)

where µmodel and µobs are the sample mean values of the model sample and observa-
tional sample, respectively. σobs is the sample standard deviation of the observational20

data and ng a factor (here: 3 as in WE08), which relates the difference of sample mean
values of the observations and model data to ng times the sample standard deviation
of the observational data.

Following WE08, Model Y would be better than Model X in this example, i.e. this
example clearly shows the limitations of the grading methodology as applied in WE08.25
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In the following, terms and definitions are given. These form the basis for a systematic
analysis, which is performed to show that the example, given above, is not an extreme
outlier, but a representative example. The methodology can also be used as a basis
for analysing further grading approaches.

3 Terms and definitions5

In the following, X , Y , Z denote random variables representing a given diagnostic
for two models “Model X” and “Model Y” and observations. We are considering N
realisations of either Model X and Model Y, i.e. we have 2 samples, X1, ..., XN , and
Y1, ..., YN , and a sample Z1, ..., ZM for the observations with sample size M.

We assume that the random variables have normal distributions, with expectations10

E (X ), E (Y ) and E (Z) and standard deviation S(X ), S(Y ) and S(Z). To be consistent
with WE08, we denote the sample means of X1, ..., XN , Y1, ..., YN , and Z1, ..., ZM as
µmodX, µmodY, and µobs. Note that in this case µ is not the expectation. In analogy,
the sample standard deviations are given by σmodX, σmodY, and σobs. Further, we de-
note E r and Sr the real expectation and real standard deviation, describing the real15

atmosphere. Hence a model is perfect if E (X )=E r and S(X )=Sr and observations are
perfect if E (Z)=E r and S(Z)=Sr .

Further GX and GY denote random variables of the grading of Model X and Model Y,
and GX1, ..., GXK and GY1, ..., GYK are samples of the grades of Model X and Y, re-
spectively. The samples have a sample size K each and are calculated on the basis of20

samples of the random variables X , Y and Z with sample sizes N for the models and
M for the observations. The sample mean values are given by µGX and µGY , i.e. µGX
and µGY are the mean values of K grades of either Model X and Y with N samples
of the random variables X and Y (models) and M samples of the random variable Z
(observational data). Note that for one specific model run (as in WE08) the sample25

size K equals 1. The expectations of the random variable GX and GY are E (GX ) and
E (GY ).
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A model is then statistically different from the observations, if the null hypothesis
H0: “Model and observations have the same expectation” can be rejected and the
alternative hypothesis H1: “Model and observations are different” can be accepted.
For a model that does not differ statistically from observational data, i.e. for E (X )=E (Z)
and S(X )=S(Z), we determine the threshold value gobs(p) for which the probability that5

G≤gobs(p) is p, i.e. P (G≤gobs(p))=p, where p is the probability that H0 is erroneously
rejected. (We use p=1% and 5% in the following.) If the realisation GX1 of the grading
of Model X is smaller than gobs(p), we reject the null hypothesis and regard the model
as statistically significantly different from the observations.

A model is then considered imperfect, if the null hypothesis H0: “Model and reality10

have the same expectations” is rejected and the alternative hypothesis “Model and
reality have different expectations” is accepted. Hence we determine the threshold
value greal(p), where P (G<greal(p))=p.

Note that these two tests seem to be very similar, however they have different impli-
cations. They differ in the expectation and standard variation of the random variable15

Z , which are E (Z) and S(Z) in the first case and E r and Sr in the second case. In
general, observational data are erroneous, which means that E (Z)6=E r or S(Z) 6=Sr .
This has an impact on the grading, which we will describe in detail below.

Two model gradings are then statistically different, if the null hypothesis H0: “Grade
of Model X and grade of Model Y are equal” can be rejected and the alternative hypoth-20

esis H1: “Grades of Model X and Model Y are different” can be accepted. Hence we
determine the threshold value ∆g(p), where P (|GX −GY |>∆g(p))=p, with E (X )=E (Y )
and S(X )=S(Y ).

The statistical tests given in WE08 (their Sect. 2.2) are special cases identi-
cal to those described above, with the assumptions E (Z)=E r and S(Z)=Sr and25

σmodX=σmodY=σobs. Our analysis will show that there is no disagreement between our
findings and the results presented in WE08 with respect to the special cases. However,
in general, the confidence intervals for the gradings are much larger than for these spe-
cial cases. An inclusion of confidence levels into the grading will change the grading
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results drastically.

4 Examples

4.1 A perfect model and perfect observations

Let us assume that we have a perfect model and that we know perfectly the regarded
diagnostic of the reality. Further we assume that the values of the individual years5

(here: N=M=10 years) have normal distributions. Since model and observations are
considered to be perfect in this case, the model’s and observational’s expectations and
standard deviations are equal: E (X )=E (Z)=E r=0 and S(X )=S(Z)=Sr=1.

What is the expectation of the grading E (G)? Is it simply: E (G)=1−1
3
|E (X )−E (Z)|

S(Z) =1?
No, because E (|X−Z |) 6=|E (X )−E (Z)|.10

We estimate E (G) by means of a Monte Carlo simulation. We perform K=100 000
realisations of G. Each has random samples of X and Z with sample size N. The
resulting probability density function is given in Fig. 2. The derived sample mean value
for the grading is µG=0.87 (since K is large µG already converged to E(G)) and the
median is 0.88. They hence differ remarkably from 1. Calculating the p=5% (1%) per-15

centile from the frequency distribution (Fig. 2) gives a value of gobs(p)=greal(p)=0.65
(0.5) for this case.

For illustration purpose we additionally assume an uniform distribution of the random
variables X and Z , with values between −1 and +1. The resulting pdf for G is the blue
line in Fig. 2. It only slightly differs from the Gaussian distribution.20

4.2 A perfect model and imperfect observations

We know that observations have errors from measurement techniques, from analysis
and due to spatial sampling or certain conditions under which the observations are
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derived. They also have some uncertainties related to the representativity (Lary and
Aulov, 2008, e.g.).

Let us assume that (as above) the reality can be described by an expectation E r

and a standard deviation Sr . If we had perfect observations the sample mean value
µobs would be close to E r , for a large number of observational data (M). Let us now5

assume that the observational data have an error. We express this error by an offset in
the expectation and standard deviation: E (Z)=E r+α×Sr and S(Z)=β×Sr . I.e. the ob-
servations have an error expressed by a multiple (or fraction) of the standard deviation,
which is ithe interannual variability in the case of annual mean data.

An uncertainty in the expectation (=α) of 50% to a factor of 3 of the standard de-10

viation is a reasonable assumption, as we will show in following by 2 examples. For
mid-latitude (35◦ N–60◦ N) total ozone columns, the interannual variability is in the range
of 5% and the differences between the various datasets (Ground-based, SBUV, NIWA,
GOME) are around 2–3%, which is around 50% of the interannual standard deviation
(see WMO (2006) p. 3.11) . Lary and Aulov (2008) presented distributions of HCl mea-15

surements, e.g. for January at 450 K to 590 K isentropic levels and between 49 and
61◦ N. Differences between 3 measurement systems are around 0.3 ppbv, whereas the
interannual variability for HALOE January values is in the order of 0.1 ppbv, which gives
a factor of α=3.

Figure 3 shows the mean values, 5% and 1% percentiles of the grading parameter.20

The coordinate (0,1) represents the perfect observation, i.e., the example in Sect. 4.1.
Clearly, the grading of the perfect model depends on the quality of the observational
data. An increasing error in the expectation and hence the sample mean value leads to
a reduction of the grading value. If the standard deviation in the observational data is
lower than in reality, the grading value for the perfect model is also reduced. Whereas25

the model gets a better grading, if the standard deviation of the observation is larger
than in reality. The 5% and 1% percentiles (Fig. 3, mid and bottom) are decreasing to
grading values of lower than 0.2, if either parameter has a 50% uncertainty.

To summarize, allowing a 1% error margin means that all models with a grading of
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more than 0.1 have to be regarded to be perfect, for most of the observational data
qualities regarded in this example.

4.3 Two identical models

Here the difference of two model gradings is investigated, i.e. we answer the question
“Is Model X statistically different from Model Y?” (see also Sect. 3).5

Let us first assume that we have perfect observations and two identical, but im-
perfect models, with expectation E (X )=E (Y )=E r+αmod×S

r and standard deviation
S(X )=S(Y )=βmod×S

r . (Both models are perfect for αmod=0 and βmod=1.) The ex-
pectation of either model grading is identical E (GX )=E (GY ) and the difference of both
is 0.10

In the example in Sect. 4.2, the expectation and standard deviation of the observa-
tions were overlaid with an error. Here, the same error approach is applied to the 2
models. The parameters αmod and βmod, are randomly chosen, but equal for the mod-
els. They cover a deviation of maximum 2 times Sr . The parameter range is smaller
than in the previous example and actually describes small values for current CCMs. For15

each of the 2 parameters 23 parameter settings were chosen in the given range. For
each setting 10 000 iterations (=K ) were calculated to estimate the probability density
function of the difference in the two model grades GX and GY , which add up to more
than 5 million iterations. Figure 1 shows one such an iteration, with N=M=10 values
for the observations, and Model X and Y, each. The frequency distribution of the 1%20

and 5% percentiles for the absolute difference in the two model grades are shown in
Fig. 4. The mean 5% and 1% percentiles of the absoute difference for all regarded
parameter settings are 0.33 and 0.42 (vertical lines). However, in 5% of the parameter
settings 1% (5%) of the model differences are larger than 0.65 (0.51). And in 1% of the
parameter settings 1% (5%) of the differences are larger than 0.72 (0.55), defining the25

1%- and 5%-percentiles.
In Fig. 4 (bottom) results are presented with inclusion of imperfect observational

data. The error is analogously considered: E (Z)=E r+αobs×S
r and S(Z)=βobs×S

r .
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αobs, σobs, αmod, βmod are independently chosen in the range [0.5,2]. The results are
similar to those with perfect observation, except that the confidence intervals are sig-
nificantly increasing. The distributions have longer tails.

This leads to the conclusion that based on their gradings, two models are not distin-
guishable, unless the difference is larger than 0.71 and 0.86 for perfect and imperfect5

observational data, respectively.
To summarize, these examples demonstrate that the statistical tests performed in

WE08 are in agreement with our findings, however for special cases only. They give
a threshold g∗=0.7 for N=11, E (Z)=E r , S(Z)=Sr , and σobs=σmodX, which roughly
corresponds to our value greal(p=0.05)=0.65 for N=10, E (Z)=E r , S(Z)=Sr , however10

σobs 6=σmodX.
Further they give a threshold value of 0.3 for a statistically significant difference in

two model gradings at a 5% significance level, with the assumptions N = 11, E (Z)=E r ,
S(Z)=Sr , and σobs=σmodX=σmodY. Our corresponding value is ∆greal(p=0.05)=0.33 for
N=10, E (Z)=E r , S(Z)=Sr , however σobs 6= σmodX=σmodY.15

The examples further show that the values for the special cases analysed in WE08
are misleading and that an adequate inclusion of observational errors change these
thresholds drastically.

5 Consequences for the grading

In the last section we have investigated the reliability of the grading according to WE08.20

In this section we show its implications on the overall grading picture, i.e. on their
Figs. 2 and 4. Applying the same procedure as in the previous sections, we randomly
defined 16 diagnostics and 13 models. We then compare two grading approaches: the
first is identical to that in WE08 and the second maps this grading to a 0 to 1 scale,
where 1 is defined by the 5%-percentile of the grade from WE08. Any major quali-25

tative differences occurring between these gradings imply that the grading of WE08
is not robust. The diagnostics are based on M=5 to 40 years of data, the expecta-
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tion and standard deviation of the observations and models vary by randomly chosen
factors α, β of maximum 2 and 3, respectively. Hence the models have potentially a
larger error than the observations. A detailed description of the parameters is given in
the supplement material (see http://www.atmos-chem-phys-discuss.net/9/14141/2009/
acpd-9-14141-2009-supplement.pdf).5

Figure 5 (left) shows the grading matrix in analogy to WE08, but for our random mod-
els and observations. The diagnostic 1 and 4 has for all models high grades, whereas
the diagnostic 13 and 16 leads to low grades for all models. For all of the diagnostics,
we have calculated the 5% percentile for the expected grade of a perfect model and
the given imperfect observations. Figure 5 (right) shows in black all grades, which do10

not differ significantly from reality. For all other grades the distance of the grade to the
confidence interval is taken as a deviation from the grade 1. Therefore, Fig. 5 (right)
shows the significant model grades (s-grades), where a s-grade 1 indicates a model,
which is not distinguishable from reality for the respective diagnostic. And all models
with a lower s-grade do differ significantly.15

This changes the picture of the grading considerably. For diagnostic 1, which is char-
acterised by high grades, the s-grades are high, but half of the models are imperfect.
Whereas for diagnostic 2 many models have low grades, but since the confidence in-
terval is large, all models are not distinguishable from reality and hence get a perfect
s-grade of 1.20

The quality of model 1 is similar to the other models with respect to the grade (Fig. 5,
left). However, taking into account the confidence intervals for the grades, this model
becomes perfect with s-grades of 1 for all diagnostics. The qualitative difference in
the grading g and statistical robust s-grade for our random models and observations
implies that the grades given in Fig. 2 in WE08 are not reliable.25

Figure 6 shows for the diagnostic 7 the grades of all models, comparable to Fig. 4
in WE08. We chose this diagnostic, because it is one of those showing a variability
among the models in the grades and s-grades. We pick out model 1 and look for a
significant difference to other models. Six models (red) do not differ significantly from
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reality and from model 1. Although model 5 and 6 (grey) are significantly different from
reality, they do not differ significantly from model 1. Only the models 3, 7, 9, 11 (green)
differ significantly from model 1 and they also differ significantly from reality. Hence a
ranking of the models, which is suggested for a weighting of the multi-model mean is a
quite difficult task, e.g. although the s-grades differ for model 1 and 5, both models do5

not differ statistically significant from reality.

6 Conclusions

In the paper “Quantitative performance metrics for stratospheric-resolving chemistry-
climate models” by Waugh and Eyring (2008) a method was introduced, which converts
the outcome of a diagnostic, i.e. a comparison of climate-chemistry model data and10

observational data, into a grade. A grading was applied to a number of diagnostics,
leading to an overall model grade, which was proposed to be used as a weighting for a
multi model mean.

In this comment, we focus on the statistical basis for the grading, with two aspects,
the statistical confidence in the grade itself, and the possibility to statistically distinguish15

two models with this grading. A summary is given in Table 1. Even if perfect observa-
tions could be performed, and a perfect model is applied, an expected grading of 0.87
is obtained for a ten year dataset, the 99%-confidence interval for the model’s grade is
[0.5,1]. If we were not able to perform perfect observations, i.e. the observations have
a bias in the order of σobs, the interannual variability, then this confidence interval is20

even enlarged to almost the whole range of the grade g [0.01,1].
Two models differ statistically, if their grades differ by more than 0.33 and 0.42 for

an assumed error of 5% and 1%. However, these are mean values for a range of
possible imperfect observational data. In 1% of the regarded errors in observational
data, a difference in the grade of more than 0.86 is needed to significantly distinguish25

two models. And note that no answer is yet given on how much the models differ.
If a statistical significant minimum difference (e.g. 0.1, 0.2, 0.3, ...) is regarded for
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the difference of two models, then this requires confidence intervals for each chosen
minimum difference. Hence a ranking of the models is hardly possible, and applicability
for a multi-model mean is very limited.

In Fig. 2 in WE08 the grades of a number of models and diagnostics are presented.
The grading does not include any uncertainty in the observational dataset for most per-5

formance metrics. The parameter σobs in their formula describes either an interannual
variability or an uncertainty due to measurements. In the first case the measurements
are implicitely regarded as perfect. And hence those are comparable to the example in
Sect. 4.1. This implies that all models with a grade larger than 0.5 have to be regarded
to be perfect. Lower model grades indicate a significant difference to the observational10

data. This is a qualitative statement and a further quantification on a statistically ro-
bust basis cannot be given. However, the observational data have uncertainties, which
should be accounted for. A thorough re-analysis of the grading would imply an esti-
mate of the observational errors and inter annual variabilities of all used observational
datasets, which has not been performed. If only a 25% or 50% uncertainty with respect15

to the standard deviation is taken into account for the mean value and the standard de-
viation, then the results for the random models presented here suggests that basically
none of the models presented in Fig. 2 in WE08 differ on a statistical basis.

The statistical tests, which we performed are in agreement with those performed in
WE08. Their tests are however only special cases, which assume perfect observations20

and that the interannual variability in the observational data equals the interannual vari-
ability in the model data. The generalisation of the statistical test with the inclusion of
observational errors and differing interannual variability in the observational and model
data clearly shows a distinct difference in the results, e.g. grading confidence levels.
Moreover the inclusion of the statistical findings into the grading approach was not per-25

formed in WE08, which limits the interpretation of the results, since it is not clear, which
gradings are statistical significant or which model gradings differ statistically from each
other. I.e., the results presented in Fig. 2 in WE08, e.g., for the diagnostic Temp-Trop
do not reflect the findings presented in Fig. 5c in WE08, showing the large dependency
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on the observational dataset.
A further challenge, which has not been addressed so far, is the robustness of a

multi-diagnostic grade. In this comment, the grading properties were investigated on
the basis of one diagnostic, only. If more than one diagnostic is taken into account, the
variability of the individual grades has to be combined somehow with the confidence5

intervals to provide an overall model grade with an uncertainty range.
The evaluation of models is an important part of model development. Multi-model

approaches are the only way to address questions, which are of high importance to
politics and society. Model grading helps to better understand model differences and
determine specific model shortcomings. Hence a statistical robust grading is absolutely10

necessary. We propose a detailed verification of any further grading methodology,
e.g., on the basis of Monte Carlo simulations. And we further strongly suggest not
to consider a grading approach in the way it was done for any further multi-modelling
study. In detail, we propose for any future grading (a) to either calculate, estimate,
or rely on expert judgement for all of the errors 1–3 described in 2.1, as well as for15

the inter annual variability; (b) to include these uncertainties in the grading approach
such that if the model data cannot be statistically distinguished from reality then and
only then the grade is 1; (c) to also include these uncertainties in the determination of
grades lower than 1 (e.g. 1−x), such that for a given significance level, model data and
reality differ significantly by at least a certain value, which corresponds to some value20

x in the grading.

Acknowledgement. We like to thank Darryn Waugh for a first discussion of this comment, which
was very helpful for us in trying to understand the different views on a “grading”.
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Table 1. Overview on the results from the Monte Carlo simulations. Imperfect observations
are defined by an offset in the expectation and a multiple in the standard deviation (Details see
text).

Percentile
5% 1%

Model differs significantly from perfect observations g < 0.65 g < 0.50
Model differs significantly from imperfect observations g < 0.20 g < 0.01

Two models differ significantly (perfect observations) |∆g| > 0.33 |∆g| > 0.42
Two models differ significantly in 5% of perfect observations |∆g| > 0.51 |∆g| > 0.65
Two models differ significantly in 1% of perfect observations |∆g| > 0.55 |∆g| > 0.71
Two models differ significantly in 5% of imperfect observations |∆g| > 0.52 |∆g| > 0.69
Two models differ significantly in 1% of imperfect observations |∆g| > 0.65 |∆g| > 0.86
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Fig. 1. Three random experiments (red, blue, and green) with 10 realisations each. A random
number generator with with a Gaussian distribution and an expectation of 0 and standard devi-
ation 1 (black line) is applied to generate these numbers. The calculated sample mean values
and sample standard deviations for the three realisations are shown on top of each row. The
red one is taken as an observational dataset, the other two as results from 2 model experi-
ments. Hence the mean values of the observation, Model X and Model Y will all converge to 0
(=expectation of the normal distribution) with increasing sample size.
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Fig. 2. Probability density function for the random variable G (=grading) of a perfect model on
the basis of perfect observations for a Gaussian (red) and a uniform (blue) distribution (between
−1 and +1).
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Fig. 3. Top: mean grading, i.e. expectation of the random variable GX (=E (GX )) (top), 5%-
(mid), and 1%-percentiles (bottom) for a perfect model and imperfect observations. The error
in the observations is defined by an offset in the expectation (y-axes) and a multiple of the
standard deviation (x-axis). The offset is a multiple of the standard deviation. α=0 and β=1
represents perfect observations.
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Fig. 4. Probability density distribution of the the 1% (green) and 5% (red) percentile for the
absolute difference of two random variables |GX−GY |, i.e. the difference in the grading of two
imperfect but identical models for perfect (top) and imperfect (bottom) observations. The vertical
lines show the expectation of the 1% and 5% percentiles.
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Fig. 5. Grading matrices for 13 random models and 16 random diagnostics. Model perfor-
mances and observational data are randomly defined. Left: grading without consideration of
confidence intervals (as in WE08). Right: grading with inclusion of 95% confidence interval
(see text for details).
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Fig. 6. Grading of the models for diagnostic 7. Horizontal lines mark the 5% percentile for
a perfect model (red) and for significant difference of either model 2–13 to model 1 (blue).
Models, which do not differ significantly from reality at a 95% confidence level are marked in
red. Models, which significantly differ from model 1 are marked in green. Models, which do not
differ significantly from model 1, but which differ significantly from reality are marked in grey.
Errorbars indicate the 95% confidence interval for the grading difference to any other model,
i.e. within these errorbars two models are equal. The squares mark the s-grades.
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